Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 393: 110945, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38460934

RESUMO

This study aimed to evaluate the antibacterial and inhibitory action of NorA, Tet(K), MsrA and MepA efflux pumps in S. aureus strains using the sesquiterpenes named trans-caryophyllene and caryophyllene oxide, both isolated and encapsulated in liposomes. The antibacterial and inhibitory action of these efflux pumps was evaluated through the serial microdilution test in 96-well microplates. Each sesquiterpene and liposome/sesquiterpene was combined with antibiotics and ethidium bromide (EtBr). The antibiotics named norfloxacin, tetracycline and erythromycin were used. The 1199 B, IS-58, RN4220 and K2068 S. aureus strains carrying NorA, Tet(K), MsrA and MepA, respectively, were tested. In the fluorescence measurement test, K2068 S. aureus was incubated with the sesquiterpenes and EtBr, and the fluorescence emission by EtBr was measured. The tested substances did not show direct antibacterial activity, with MIC >1024 µg/mL. Nonetheless, the isolated trans-caryophyllene and caryophyllene oxide reduced the MIC of antibiotics and EtBr, indicating inhibition of NorA, Tet(K) and MsrA. In the fluorescence test, these same sesquiterpenes increased fluorescence emission, indicating inhibition of MepA. Therefore, the sesquiterpenes named trans-caryophyllene and caryophyllene oxide did not show direct antibacterial action; however, in their isolated form, they showed possible inhibitory action on NorA, Tet(K), MsrA and MepA efflux pumps. They may also act in antibiotic potentiation. Further studies are needed to identify the mechanisms involved in antibiotic potentiation and efflux pump inhibitory action.


Assuntos
Lipossomos , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Sesquiterpenos Policíclicos , Etídio , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos
2.
Fundam Clin Pharmacol ; 38(1): 84-98, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37649138

RESUMO

BACKGROUND: Thiadiazines are heterocyclic compounds that contain two nitrogen atoms and one sulfur atom in their structure. These synthetic molecules have several relevant pharmacological activities, such as antifungal, antibacterial, and antiparasitic. OBJECTIVES: The present study aimed to evaluate the possible in vitro and in silico interactions of compounds derived from thiadiazines. METHODS: The compounds were initially synthesized, purified, and confirmed through HPLC methodology. Multi-drug resistant bacterial strains of Staphylococcus aureus 10 and Pseudomonas aeruginosa 24 were used to evaluate the direct and modifying antibiotic activity of thiadiazine derivatives. ADMET assays (absorption, distribution, metabolism, excretion, and toxicity) were conducted, which evaluated the influence of the compounds against thousands of macromolecules considered as bioactive targets. RESULTS: There were modifications in the chemical synthesis in carbon 4 or 3 in one of the aromatic rings of the structure where different ions were added, ensuring a variability of products. It was possible to observe results that indicate the possibility of these compounds acting through the cyclooxygenase 2 mechanism, which, in addition to being involved in inflammatory responses, also acts by helping sodium reabsorption. The amine group present in thiadiazine analogs confers hydrophilic characteristics to the substances, but this primary characteristic has been altered due to alterations and insertions of other ligands. The characteristics of the analogs generally allow easy intestinal absorption, reduce possible hepatic toxic effects, and enable possible neurological and anti-inflammatory action. The antibacterial activity tests showed a slight direct action, mainly of the IJ23 analog. Some compounds were able to modify the action of the antibiotics gentamicin and norfloxacin against multi-drug resistant strains, indicating a possible synergistic action. CONCLUSIONS: Among all the results obtained in the study, the relevance of thiadiazine analogs as possible coadjuvant drugs in the antibacterial, anti-inflammatory, and neurological action with low toxicity is clear. Need for further studies to verify these effects in living organisms is not ruled out.


Assuntos
Anti-Infecciosos , Tiadiazinas , Antibacterianos/farmacologia , Tiadiazinas/farmacologia , Tiadiazinas/química , Norfloxacino/farmacologia , Anti-Inflamatórios , Testes de Sensibilidade Microbiana
3.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005371

RESUMO

The efflux systems are considered important mechanisms of bacterial resistance due to their ability to extrude various antibiotics. Several naturally occurring compounds, such as sesquiterpenes, have demonstrated antibacterial activity and the ability to inhibit efflux pumps in resistant strains. Therefore, the objective of this research was to analyze the antibacterial and inhibitory activity of the efflux systems NorA, Tet(K), MsrA, and MepA by sesquiterpenes nerolidol, farnesol, and α-bisabolol, used either individually or in liposomal nanoformulation, against multi-resistant Staphylococcus aureus strains. The methodology consisted of in vitro testing of the ability of sesquiterpenes to reduce the Minimum Inhibitory Concentration (MIC) and enhance the action of antibiotics and ethidium bromide (EtBr) in broth microdilution assays. The following strains were used: S. aureus 1199B carrying the NorA efflux pump, resistant to norfloxacin; IS-58 strain carrying Tet(K), resistant to tetracyclines; RN4220 carrying MsrA, conferring resistance to erythromycin. For the EtBr fluorescence measurement test, K2068 carrying MepA was used. It was observed the individual sesquiterpenes exhibited better antibacterial activity as well as efflux pump inhibition. Farnesol showed the lowest MIC of 16.5 µg/mL against the S. aureus RN4220 strain. Isolated nerolidol stood out for reducing the MIC of EtBr to 5 µg/mL in the 1199B strain, yielding better results than the positive control CCCP, indicating strong evidence of NorA inhibition. The liposome formulations did not show promising results, except for liposome/farnesol, which reduced the MIC of EtBr against 1199B and RN4220. Further research is needed to evaluate the mechanisms of action involved in the inhibition of resistance mechanisms by the tested compounds.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sesquiterpenos , Farneseno Álcool/farmacologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Lipossomos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Antibacterianos/farmacologia , Sesquiterpenos/farmacologia , Etídio/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/metabolismo
4.
Pharmaceutics ; 15(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37896161

RESUMO

Valencene and nootkatone are aromatic sesquiterpenes with known biological activities, such as antimicrobial, antioxidant, anti-inflammatory, and antitumor. Given the evidence that encapsulation into nanosystems, such as liposomes, could improve the properties of several compounds, the present study aimed to evaluate the activity of these sesquiterpenes in their isolated state or in liposomal formulations against strains of Staphylococcus aureus carrying efflux pumps. The broth microdilution method evaluated the antibiotic-enhancing activity associated with antibiotics and ethidium bromide (EtBr). The minimum inhibitory concentration was assessed in strains of S. aureus 1199B, IS-58, and RN4220, which carry the efflux proteins NorA, Tet(K), and MsrA. In tests with strain 1199B, valencene reduced the MIC of norfloxacin and EtBr by 50%, while the liposomal formulation of this compound did not show a significant effect. Regarding the strain IS-58, valencene, and its nanoformulation reduced norfloxacin MIC by 60.3% and 50%, respectively. In the non-liposomal form, the sesquiterpene reduced the MIC of EtBr by 90%. Against the RN4220 strain, valencene reduced the MIC of the antibiotic and EtBr by 99% and 93.7%, respectively. Nootkatone and its nanoformulation showed significant activity against the 1199B strain, reducing the EtBr MIC by 21.9%. Against the IS-58 strain, isolated nootkatone reduced the EtBr MIC by 20%. The results indicate that valencene and nootkatone potentiate the action of antibiotics and efflux inhibitors in strains carrying NorA, Tet(K), and MsrA proteins, which suggests that these sesquiterpenes act as efflux pump inhibitors in S. aureus. Therefore, further studies are needed to assess the impact of incorporation into liposomes on the activity of these compounds in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...